A Suite of Tools for Pragmatic
Program Analysis
of C and C++
Daniel S. Wilkerson

 Build Interceptor
* Elsa/Oink
* Delta

Acknowledgments

Alex Aiken and David Wagner funded and
supported the project

Scott McPeak wrote Elsa, extended Delta,
collaborated extensively on thinking,
debugging, learning/“puzzling out” C++

Jetf Foster and Rob Johnson provided Cqual

Build Interceptor extends work by Ben Liblit
and Hao Chen and Geotif Morrison

Ben helped substantially with C++ also

Many others helped with ideas, testing, a little
implementation, etc.

Helped with Talk

e Matt Harren
 Simon Goldsmith
e Adam Chlipala
 Tachio Terauchi
 Scott McPeak

Analyzing Code In the Wild

e Much real code is C/C++
* Messy/unique build process

 Hard to isolate failure-inducing part of
large inputs (Kernel, Mozilla)

* Want to re-use the tront-end
* Want analyses to compose

- Poor-man's tlow-sensitive cqual: run
control-flow, then data-flow (repeat?)

Outline of process

* Build as usual; use Build Interceptor
to get .1 files (post-preprocessed files)

* Use Elsa/Oink to parse and typecheck
C/C++

* Debug minimizing large inputs with
Delta

* Ship your analysis with Oink so others
can re-use it.

Where we are

 Build Interceptor
o Blsa/Oink
* Delta

Build Interceptor: features

 Captures .ifiles generated during build
- and linking info for whole-program analysis
* No need to modity build process!
- Scales to hundreds of projects

* 4™ generation, builds on work done in
Hao Chen's and Ben Liblit's projects

- 92.5% of Red Hat 7.3 projects *
- Being improved further for Debian

Build Interceptor, p.2: usage

* Works by replacing system tools

- You must have root

- Prevents stupid mistakes with checks and
helpful on/off make targets

e Result is

- a .1 file for every compile

- a .ld file for every link
e The list of .i files that went into the ELF

* To get whole-program analysis just pass
the .1d file to Oink with a tlag.

Build Interceptor, p.3:
how it works

* When gcc runs ccl, gets our script
instead, which

- copies .i file input
- Runs real ccl

- Appends assembly data string in an unused

ELF section containing name of copied .i
file

* This section concatenates during
linking and survives stripping

Build Interceptor, p.4:
foo.c how 1t works diagram

cpp ccl <
v . foo.s
foo.1 ™ .section .note.ccl ~»as »f00.0
o .ascii “ [tmp/foo.i
A
\
bar.o foo.exe
jld —»note.ccl:“ /tmpffoo.i " —
. _ - .note.ld : “foo.o, bar.o0”
[tmp/foo.i nt :
»0bjdump .note.ccl —" /tmp/foo.i ", “tmp/bar.i”

»0objdump .note.ld —»“f00.0, bar.o”

Build Interceptor, p.5:
you can really control build

e We also intercept collect2 /Id

- With -t, get list of .o files as they are linked

- These are stored into ELF file using
objcopy to insert an unused ELF section

— This trick due to Hao Chen and Ben Liblit
e Intercept make to turn off -j

e Intercept cpp to turn off -P

e Provide our own gcc spec file, etc.

Build Interceptor, p.6:
already run for you

* Red Hat 7.3 .i files are available if you
want to avoid this for now

- We also give list of the subset of those that
Elsa/Oink can parse

- On those, any bugs are yours, not
Elsa/Oink

- We forgot to include .so files in whole-
program lists
e Oops
 We'll fix that

Where we are

o Build Interceptor
e Flsa/Oinlk
e Delta

Scott McPeak's Elsa

* Parses, typechecks C
e & simplifies C++

- Result is simplified down to “Java with
Multiple inheritance”

- Pretty clean design internally

e Red Hat 7.3

- >99% C files go through

- >50% C++ files go through with old
headers

 Kernel, Mozilla and Qt go through

Elsa, p.2:
“Java”-semantic output

* Instantiates templates

* Turns operator overloading into
function calls

* Inserts implicit function calls: ctors,
dtors.

 Writes implicit code: default ctor, dtor,
operator =()

* Looks up all variables for you

Where we are

o Build Interceptor
e 1 5a/0Oink
* Delta

Oink

e Client of Elsa

- Which provides intra-procedural control-
flow for Oink

e Generic flow-insensitive data-flow
analysis

- Client: Jeff Foster's monomorphic Cqual

- Rob Johnson's polymorphic in the works
 Linker imitator

- Order of linking probably right by default

Oink, p.2: compose analyses

* Designed to allow analyses to
collaborate/compose if they

- Step 1: annotate types and AST (using the
generic annotation mechanism)

- Step 2: then make conclusions

 Can run step 1 for many analyses
before running a custom step 2

 Can ship your analyses with Oink

- Can also ship combo analyses built from
others

Oink, p.3: projects using it

e “Scrash”, Matt, Naveen et. al.: “eliminate
sensitive information ... [in] crash report”

- Annotated with $tainted, flowed qualifiers,
Pretty printed back out

e Umesh: “Find sensitive data that is live at the
time of fork() ”

- Combo data/control -flow analysis

- Simply added usual function call edges to
intra-procedural control-flow

- Something like 1 month to get it to work with
lots of help from me

Oink, p.4: work in progress

Karl Chen and I working on veritying Debian C
code has no format-string bugs

- Goal: become part of Debian vetting process

- adding other analyses would then have low
marginal cost

Hao started porting MOPS to Oink, but became
a protfessor; said student is doing it

Zhendong & Alex said wanted it for something
Could add Wes Weimer's Java parser

- Typecheck into C++ AST and Types
- Any C++ analysis is also a Java analysis

Where we are

o Build Interceptor
* Elsa/Oink
* Delta

Delta

e Minimizes interesting files
- Such as those that crash your program
* Just provide a test of interestingness
- Such as: grep 'error’
e Used on quarter-million line inputs
- Seems to always stop at a page or two

 Implementation of “Delta Debugging”
algorithm from Saarland University

- My code is easier to read than the paper

Delta, p.2: how it works

 Simulated annealing
 For i going down (temperature)

- For each group of 271 lines

* Remove group and run test
* Deletion permanent if test passes

* Original algorithm also tries negative:
deleting “all but this group”

- this is a waste of time
 “Dumb as hell but goes like 60”

- Feynman

Delta, p.3:
using language structure

e Guesses much better if we use the
language structure somehow

e Filter topformflat added by Scott

- Omits newlines > a given nesting depth
- Depth=0 means one line=whole function

- Minimize at each depth with Delta, with
depth increasing from O

e Result: Delta “understands” C-like
syntax nesting

Delta, p.4: results

* Don't know if Elsa/Oink possible
without it

e Alex: “I used it for one assignment
where the students were given
something that we knew would
minimize pretty well. They all liked it.”

 User Ed Avis: “successtully used delta
to track down . . . perl bugs”

* Works on configuration files, etc.

Summary

Use the tools to analyze real programs

Write analyses with Oink and they will all
compose together!

- Saves duplicated effort on front-ends
- Makes composite analyses possible

If Elsa/Oink achieves critical mass, all analyses
for C/C++ will be written in it and will compose
with one another

Take over the analysis universe.

Feel free to talk to me about using any of these
tools for a demo/lesson.

